FEDGE - Fuzzy Edge Detection by Fuzzy Categorization and Classification of Edges
نویسندگان
چکیده
In this paper we will present a fuzzy edge detector, FEDGE. It is based on learning fuzzy edges by the method of Fuzzy Categorization and Classification (FCC). A set of images were used as examples for the definition of a fuzzy edge. FCC will try to recognize edges within a new image by collecting evidence from these examples. FEDGE demonstrates that FCC can be used homogeneously from pixel-level to symbolic level by recursively defining concepts using examples and classify a new image by collecting evidence from these examples. Result of FEDGE will also be given in this paper.
منابع مشابه
A FUZZY DIFFERENCE BASED EDGE DETECTOR
In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...
متن کاملColor Image Edge Detection Using Fuzzy Membership Functions
Digital image processing is widely used in many research oriented fields. Edge detection method is one of the important techniques in Image Segmentation, which is used to find out the objects in the input image in exact manner. An edge is the boundary between an object and background and it indicates the boundary between overlapping objects. One of the most commonly used operation analysis is e...
متن کاملDetection of Edges using Fuzzy Logic
Edge detection is one of the most important steps in image processing. There are some method for edge detection such as Sobel, Preweitt, Laplacian and Laplacian of Gaussian. These methods have some limitations like fixed edge thickness and some parameter like threshold is difficult to implement. But fuzzy rule-based technique does not have such limitation, as we can change the edge thickness si...
متن کاملCompetitive fuzzy edge detection
Our fuzzy classifier detects classes of image pixels corresponding to gray level variation in the various directions. It uses an extended Epanechnikov function as a fuzzy set membership function (FSMF) for each class where the class assigned to each pixel is the one with the greatest fuzzy truth of membership. This classification is done first, after which a competition is run as a second step ...
متن کاملTwo New Methods of Boundary Correction for Classifying Textural Images
With the growth of technology, supervising systems are increasingly replacing humans in military, transportation, medical, spatial, and other industries. Among these systems are machine vision systems which are based on image processing and analysis. One of the important tasks of image processing is classification of images into desirable categories for the identification of objects or their sp...
متن کامل